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Abstract 

In this paper the elliptic genus for a general Calabi-Yau 4-fold is derived. The recent work of 
Kawai calculating N = 2 heterotic string one-loop threshold corrections with a Wilson line turned 
on is extended to a similar computation where K3 is replaced by a general Calabi-Yau 3- or 4-fold. 
In all cases there seems to be a generalized Kac-Moody algebra involved, whose denominator 
formula appears in the result. 0 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In this paper, I extend the work of Kawai [4], calculating N = 2 heterotic string one- 
loop threshold corrections with a Wilson line turned on, to Calabi-Yau 3- and 4-folds. (See 
also [lo] for an alternative interpretation of Kawai’s result.) In full generality, this calculation 
provides a map from a certain class of Jacobi functions (including elliptic genera) to modular 
functions of certain subgroups of Sp4(Q), in a product form. In a number of cases, these 
products turn out to be equal to the denominator formula of a generalized Kac-Moody 
algebra. It seems natural to assume that this algebra is present in the corresponding string 
theory, and indeed in [9] it is argued that this algebra is formed by the vertex operators of 
vector multiplets and hypermultiplets. 
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2. Elliptic genus 

In this section, I recall some basic facts about elliptic genera for Calabi-Yau manifolds, 
mostly from [5], and I explicitly derive it for 4-folds. Let C be a complex manifold of 
complex dimension d, with SU(d) holonomy. Then its elliptic genus is a function @(t, z) 
with the following transformation properties 

@(t, z + At + /.L) = (-1)2m(h+PL)e[-m(h2t + 2hz)l#(t, z), 

where m = id, and it has an expansion of the form 

k,P ET (2) 

b(r, z) = C 0, r)q”y’, (3) 
n?o,rGz+m 

I use here the notations e[x] = elnix , q = e[t], y = e[z]. The coefficients ~(0, -m + p) 
for 0 5 p 5 d have the following geometrical meaning: 

d 
~(0, -m + p) = xp = C(-l)P+YhP,q, 

q=o 
(4) 

where hJ’J are the Hodge-numbers of C. Furthermore 

@(r, 0) = x (5) 

is the Euler number of C. An important feature is that the elliptic genus can be decomposed as 

for functions h, and Qm,W defined by 

h,(r) = c c@ (N)q N’4m, 
NE-p2(mod4m) 

&I,/LL(T, Z) = c 
(_1)‘-Pq’z/4”y’. 

(7) 

63) 

r=p(mod2m) 

Note that the c,(N) are only defined for -m + 1 ( w I m, but since 0m,y+2m = 

(-l)2”&z,,? it is useful to define 

c,(N) = (-)‘-Pc,(N) (9) 

for all r = p mod 2m. The relation between the coefficients of h, and 4 is then given by 

c(n, r) = c,(4mn - r2). (10) 

Finally, the transformation properties of the h, can be derived to be 



C.D.D. Neumann/Journal of Geometry and Physics 29 (1999) 5-12 I 

h,(t + 1) = e -$ h,(t), 
[ 1 

A,(-l/t) = $F e e [E] h,(t). 
u=-m+l 

(11) 

(12) 

Now if m is integer, the elliptic genus satisfies the defining properties of what is called a 
weak Jacobi form of index m and weight 0. The ring 52*,* of weak Jacobi forms of even 
weight and all indices is well known [l]. It is a polynomial algebra over M* (the ring of 
ordinary modular forms) with two generators 

A = @IO,1 CT3 z> 
A(r) ’ 

B = ~12,l(~~Z) 

A(t) ’ 
(13) 

Here A(t) = Gus and ~$to,l and q512,t are unique cusp forms of index 1 and weights 10 
and 12 respectively. The generators have an expansion 

A = y-’ - 2 + y + O(q), (14) 

B = y-’ + 10 + y + O(q). (13 

It immediately follows that the space Jo, 1 is one dimensional with basis B, which implies 
that the elliptic genus of a Calabi-Yau 2-fold is 

;B. (16) 

So for K3, with x = 24, it should be 2B, which is indeed the case [7]. The space Jo,2 is two 
dimensional, with basis E4(t)A2 and B2, E4(5) being the normalized Eisenstein series of 
weight 4. So the elliptic genus is fixed by specifying ~0 and x, leading to 

xoE4A2 + &(B2 - E4A2). (17) 

In the case that the manifold has strict SU(d) holonomy, which implies that xo = 2 the 
following predictions can be done 

xi = ; - 8, (18) 

x2=%+12 (19) 

so that x should be a multiple of 6, and there is a non-trivial relation on the Hodge-numbers 

4(/P + G’) + 44 = 2$, + /&2 (20) 

as was recently noticed by Sethi et al. [6]. For a Calabi-Yau 3-fold, the elliptic genus is 
known to be [5] 

O” (1 - qnyZ)(l - q”y-2) $(y-li’ + y’/2) n 
n=l (1 - qnY)(l - q”y-‘) . 

(21) 
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3. Product formulae 

In this section I look at the following generalization of the formulae in [4]: 

Z = 5 Z,,,(T, CT, v, r)hw(r), 
/s-m+1 

(22) 

where the h, come from a function q5, satisfying the transformation properties (1) and (2), 
and can be split like (6). For generality, I allow this function to have a pole of finite order N 
for t --+ ioo, but nowhere else in the fundamental domain. So the function 4 has a Fourier 
expansion of the form 

4(r, 2) = c 0, rWy’, 
nz-N,reZ+m 

converging for all t with r2 > 0 (r2 = St>. The functions Z,,, are defined by 

(23) 

&n,,u-, UT V? t> = c c (_l)b-‘lq(l/2)pZq(1/2)p:,, 

m1,mz,n1>n2 bs2mZ+w 
(24) 

$ = -$m,U+m2+nlT+n2(TlJ-mV2)+bV12, (25) 

b2 
;(Pz - Pi) = G - mlnl + m2n2, 

Y = T2U2 - mV,2. (27) 

The function Z is manifestly invariant under the following transformations 

U + U + 2hmV -I- h2mT, V+V+hT+,u, (28) 

withh,p E Zifm E Z,andh,p E 2Zifm E Z+i.(Thishasthesameeffectasthe 
substitutions 

m2 + m2 - p2mnz + pb, 

nl + nl +h2mm1 -2hpmn2+hb, 

b -+ b + 2hmml - 2pmn2, 

(29) 

and these leave the inproduct b2 /4m - m 1 n I+ m2n2 invariant. In the same way one proves 
the other invariances.) It is also invariant under the generalization of SL(2,Z)r x SL(2,Z)u, 
generated by 

T-+T+l, (30) 

T+ U-U-m;, v+ ;, (31) 

U+lJ+l, (32) 

u+;, 
V2 

T+T-my, (33) 
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Furthermore, it is invariant under exchange of T and U, and under a parity transformation 

T t, U, (34) 

v-+-v. (35) 

These transformations generate a group isomorphic to Sp4 (Z) if m = 1, and to a paramodu- 
lar subgroup of Sp,(Q) [3] form > 1. Since r2.Z is invariant under modular transformation 
of t, as will be shown later, the following integral is well-defined and can be evaluated 
explicitly by the methods of [8,9]: 

(36) 

The subtraction is to remove the logarithmic singularities due to the massless hypermul- 
tiplets, and is needed only if m is integer. If it is not, I define ~(0, 0) to be zero. Poisson 
resummation on m 1, m2 leads to 

c 4 
(1/2)P~q(l/2)P; = - 

k,.k2 “” 
c 

(114m)b2 exp G, 

m1,mz 

where 

G= $lA12 - 2niT(nlk2 + n2k1) + $(Vd - VA) 

- !7(V2jj _ v2A) + 2nim Vi 
~(nl + n20)A, 

G 

(37) 

(38) 

A=-kl +nlt+k2U+n2tU, (39) 

A=-kl +nlt+k26+n2tfi. (40) 

By applying another Poisson resummation on b, it is easy to find the following transforma- 
tion properties of Z,,, : 

Z/Am(-l/r) = Jt/2mi -2 e [E] Z,,,(t), 
v=-m 

(41) 

which together with the known properties (12) of the h, prove the modular invariance of 
r2Z. Following [8,9] a bit further I find 

(42) 

beZ+m 

- In ]I - e[ZU + bV]14c(o~b). (43) 
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(This under the assumption that 0 p V2 ( U2/]b] for all b with ~(0, b) # 0). Here 

8n 
k=-e 1-Y 

3fi ’ 

&,d = - ln l-I 11 - e[kT + 1U + bV]14c(k’3b) 
k>O,leZ,bcZ+m 

(This for T2 large enough). Putting this all together, I obtain 

x e[pT + qu + rV] n (1 - eW” + 1U + bW(kE9b) 
I (kl,bbO 

where the coefficients p, q, I are given by 

p= c %(O, b), 
beZ+m 4m 

4 = c Lc,O, b), 

beZ+m 24 

r= c +(O, b), 
beZ+m 

2 

9 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

and the summation condition means k > 0 or k = 0,l > 0 or k = 1 = 0, b > 0 (always 
with k, 1 E Z and b E Z + m). In the calculation I use the following non-trivial identity: 

c %(O, b) = 
E2(tM(t, O>l,o 

b 4m 
24 ’ 

This can be proven as follows (cf. [ 111). First note that 

(50) 

(51) 

(where 0’ = q&Q). So it is equivalent to prove that the constant term of the following 
expression vanishes: 

But this can be rewritten as 

(52) 

(53) 

This function transforms as a modular function of weight 2, so multiplying it by dt gives 
an SLz(Z) invariant differential form. By assumption, it can have a pole at t + ioo, but 
nowhere else in the fundamental domain. A contour integral argument then shows that the 
residue of this pole must vanish. But this is just the constant term of the function above. 
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Applying these formulae to 2B, the elliptic genus of K 3, I recover the result of Kawai [4]. 
Now consider the elliptic genus of a Calabi-Yau 4-fold, 

4 = xoE4A2 + &(B2 - E4A2). (54) 

Amazingly, the x-dependent part equals the coefficients of Gritsenko and Nikulin’s second 
product formula [3], which is known to be associated to the generalized Kac-Moody al- 
gebra which is an automorphic form correction to the Kac-Moody algebra defined by the 
symmetrized generalized Cartan matrix 

G2=[i2 s2 ; $1. (55) 

Unfortunately, there is no such formula for the xo-dependent part. So for a Calabi-Yau 
4-fold I find 

T = -XO~((k#?~6(fi>i2) - 4X ln((ky>2iF2(~)i2)3 (56) 

where F2 is Gritsenko and Nikulins product and fl6 is 

e[2V] n (1 - e[kT + zu + bV])C(k’~b) 
W,b)>O 

(57) 

of weight 6, with coefficients c coming from 2E4A2. The following section describes the 
product formula for a Calabi-Yau 3-fold. 

4. Calabi-Yau 3-folds 

In this section I apply my formulae to Eq. (21), without the factor 4 x . Expanding this in 
4 gives 

V2 + y1’2) + O(q) (58) 

so that ~(0, -i) = ~(0, i) = 1, and the corresponding product formula reads 

Fo(T, u, V) = Ptit2qtit2y-t/4 n (1 _ pkq”yb)c(W (59) 
(k,l,b)->O 

of weight 0, where now p = e[T], q = e[U], y = e[V]. In the limit V + 0, this product 
behaves like 

m2(Pb?*(4) (60) 

as can be expected for x = 2. This product can be expanded in terms of p (since it is valid 
for T2 large enough). It turns out to be useful to consider Fo( T, U, 2V). Thus 

Fo(T, U, 2V) = c @khr Y)Pk (61) 
keZ,o+l/l2 
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This is a variant of what is known as a Fourier-Jacobi expansion. The transformation 
properties of Fo(T, U, V) imply that the coefficients 4M should be Jacobi forms of weight 
0 and index 6k, with a possible multiplier system. From the product formula it is possible 
to read of the lowest order coefficient 

@l/12(4? Y) = q”‘2(Y-“2 - Y”2) n(] - q”y)(] - qnY-‘) 
n>o 

=&1(4, Y)+(q) (62) 

by the product formula for theta-functions. This is indeed a Jacobi cusp form of weight 0 
and index $ with multiplier system [2], which can serve as a consistency check. It can be 
written as a sum as follows 

(63) 

where p(n) is the partition function. Now unlike the case of F2 (52) from [3], it does not seem 
to be possible to write the entire product as a lifting of its first Fourier-Jacobi coefficient. 
It does seem to be likely that this function is also related to some generalized Kac-Moody 
algebra. This is under investigation. The final result for the Calabi-Yau 3-fold calculation is 

Z = -x In ]fij(s2)]2. (64) 
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