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Abstract

In this paper the elliptic genus for a general Calabi—Yau 4-fold is derived. The recent work of
Kawai calculating N = 2 heterotic string one-loop threshold corrections with a Wilson line turned
on is extended to a similar computation where K 3 is replaced by a general Calabi-Yau 3- or 4-fold.
In all cases there seems to be a generalized Kac-Moody algebra involved, whose denominator
formula appears in the result. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, I extend the work of Kawai [4], calculating N = 2 heterotic string one-
loop threshold corrections with a Wilson line turned on, to Calabi—Yau 3- and 4-folds. (See
also [10] for an alternative interpretation of Kawai’s result.) In full generality, this calculation
provides a map from a certain class of Jacobi functions (including elliptic genera) to modular
functions of certain subgroups of Sp,(Q), in a product form. In a number of cases, these
products turn out to be equal to the denominator formula of a generalized Kac—Moody
algebra. It seems natural to assume that this algebra is present in the corresponding string
theory, and indeed in [9] it is argued that this algebra is formed by the vertex operators of
vector multiplets and hypermultiplets.
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2. Elliptic genus

In this section, I recall some basic facts about elliptic genera for Calabi—Yau manifolds,
mostly from [5], and T explicitly derive it for 4-folds. Let C be a complex manifold of
complex dimension d, with SU(d) holonomy. Then its elliptic genus is a function ¢(z, 2)
with the following transformation properties

atr+b  z mcz? a b
¢<Cf+d’C‘t+d)=e|:cr+d:|¢(t’z)’ (C d)GSLz(Z), 4]

(T, 24+ At + p) = (—D"*HWe[—m (W27 + 20219 (x, 2), MpeZ, 2

where m = %d , and it has an expansion of the form

.= Y gy, 3)

n>0,reZ+m
I use here the notations e[x] = e¥7'¥, g = e[1], y = e[z]. The coefficients c(0, —m + p)
for 0 < p < d have the following geometrical meaning:

d
c(0, —m +p) = xp = ) _(~D7*hP4, (4)
g=0

where h7+7 are the Hodge-numbers of C. Furthermore
(7,0 = x (5)

is the Euler number of C. Animportant feature is that the elliptic genus can be decomposed as

p. D= P hu(D)nu(r2) 6)

pu=—m+1

for functions &, and 6, ;, defined by

hu(t) = Z cu(N)gV/om, .
N=-p?(mod4m)
2
bru(m )= 3 (DT 8)
r=gp(mod2m)

Note that the ¢, (N) are only defined for —m + 1 < u < m, but since 0y y1om =
(—1)2"'9,,,,#, it is useful to define

cr(N) = (=) "Heu(N) &)
for all » = 1 mod 2m. The relation between the coefficients of &, and ¢ is then given by
c(n, r) =c,(4mn —r?). (10

Finally, the transformation properties of the #,, can be derived to be
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2
hu(z + 1) =e|:—m:| hu(7), 1)
: = pv
hu(=1/1) = ilzmt Y e [5;] hy (7). (12)
v=—m+1

Now if m is integer, the elliptic genus satisfies the defining properties of what is called a
weak Jacobi form of index m and weight 0. The ring Jo, . of weak Jacobi forms of even
weight and all indices is well known [1]. It is a polynomial algebra over M, (the ring of
ordinary modular forms) with two generators

_ ¢101(7,2) B = $12.1(7, Z)'

A= A(r) A(T) (13)

Here A(t) = n**(r) and ¢10,1 and ¢y, are unique cusp forms of index 1 and weights 10
and 12 respectively. The generators have an expansion

A=y '-2+y+0(, (14)
B=y'+10+y+ 0(g). (15)

It immediately follows that the space Jy ) is one dimensional with basis B, which implies
that the elliptic genus of a Calabi-Yau 2-fold is

X
~B. 16
2 (16)

So for K3, with x = 24, it should be 2 B, which is indeed the case [7]. The space Jy 7 is two
dimensional, with basis E4(1')A2 and B2, E4(t) being the normalized Eisenstein series of
weight 4. So the elliptic genus is fixed by specifying xo and x, leading to

xoE4A? + 12‘—4(32 — E,AY). a17)

In the case that the manifold has strict SU(d) holonomy, which implies that xo = 2 the
following predictions can be done

X1 = % 3, (18)
2
X2 = ?X +12 (19)

so that x should be a multiple of 6, and there is a non-trivial relation on the Hodge-numbers
ah" +n¥hy 444 = 2p>" 4 p22 (20)

as was recently noticed by Sethi et al. [6]. For a Calabi-Yau 3-fold, the elliptic genus is
known to be [5]

X1z L 1 -~ (1—4")’2)(1—‘]")’_2). o1
207 = ana=m @b
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3. Product formulae

In this section I look at the following generalization of the formulae in [4]:

m
Z= Y Znu(T,U,V,Dhyr), (22)
u=—m+1

where the h;, come from a function ¢, satisfying the transformation properties (1) and (2),
and can be split like (6). For generality, I allow this function to have a pole of finite order N
for T — ioo, but nowhere else in the fundamental domain. So the function ¢ has a Fourier
expansion of the form

.= Y. gy, (23)
) n>—N,reZ+m
converging for all T with 72 > 0 (72 = J7). The functions Z,, ; are defined by

Zmu(T, U, V, 7) = Z Z (= 1)t q/DPE 52 24)

my.my,n1,n2 be2mL-+u

1 1 5
Ep,%:4—f|m,U+mz+n1T+nz(TU—mV2)+bV|‘, (25)
1 b?

5 (PL = PR) = 7 = mm + mam, (26)
Y = U, —mV3, 27

The function Z is manifestly invariant under the following transformations
U— U+2amV +AmT, Vo> VAT +u, (28)

with A, ueZifmeZ,and h,u € 2Zifm € Z + % (This has the same effect as the
substitutions

my — my — uwrmny + ub,
ni = ny + Ammy — 2humns + Ab, (29)
b — b+ 2 mmy — 2umny,

and these leave the inproduct b2 /4m — mn| + m3n; invariant. In the same way one proves

the other invariances. ) It is also invariant under the generalization of SL(2, Z)7 x SL(2, Z),,
generated by

T—>T+1, 30)
1 V2 1%

T—»>—, U->U-m—, V> —, (31
T T T

U->U-+1, (32)

1 1%
U—>—5, T—)T—m?—, Vo —. 33)
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Furthermore, it is invariant under exchange of 7 and U, and under a parity transformation

T & U, (34)
V- —V, (35)

These transformations generate a group isomorphic to Sp,(Z) if m = 1, and to a paramodu-
lar subgroup of Sp,(Q) [3] form > 1. Since 72 Z is invariant under modular transformation
of 7, as will be shown later, the following integral is well-defined and can be evaluated
explicitly by the methods of [8,9]:

d2
I= / Lz - ¢, 0. (36)
123
]:
The subtraction is to remove the logarithmic singularities due to the massless hypermul-

tiplets, and is needed only if m is integer. If it is not, I define ¢(0, 0) to be zero. Poisson
resummation on m1, m; leads to

Y
Z q(1/2>pié<1/2>p§ - Z q<1/4m>b2 exp G, (37)
my,m> ki .k U2T2
S 1.K2

where

nY . b . -
G=— |A|2—2mT(n1k2+n2k1)+F(VA—VA)
2

U;)_TZ
Tmn . - 2ximV2 -
~ T2 A - VA + T2+ ml) A, (38)
2 U,
A=—ki+nmt+kU+nytU, 39)
A=—ki+nmt+kU+ntU. (40)

By applying another Poisson resummation on b, it is easy to find the following transforma-
tion properties of Z,, :

Zyum(=1/1)=1/2mi ) e [_’“’} Zym(T), 41)

2m

V=—m

which together with the known properties (12) of the #, prove the modular invariance of
72 Z. Following [8,9] a bit further I find

I—Lfﬂ<0)—ﬂE<)(0) o)
0_U2 ‘[22 ¢T, _3U2 2T¢T, |q07 ( )

V2 U

Iy= Y 2me(0,b) | b2 -2 — |b|V2 + — | = c(0,0) In(kY)

Uy 6
beZl+m

—In [] 11— ellU +bV]|* P (43)
(1>0.b€Z+m).(1=0,0<beZ+m)
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(This under the assumption that 0 < V, < U,/|b| for all b with c(0, b) # 0). Here
8n
k = el—)” (44)
33
Ty = —In I [1 — e[kT +IU + bV]j*cki) (45)
k>0,leZ,beZ+m

(This for 7> large enough). Putting this all together, I obtain

7 = —2In(ky)1/2<0.0

2
x |elpT +qU +rV] [ (1 —elkT +1U +bV]ED| (46)
(k,l,b)>0
where the coefficients p, ¢, r are given by
b2
p= ), 7-cO.b), (47)
beZ+m
1
= —¢(0, b), 48
g= ) 5;¢0,b) (48)
beZ—+m
|b|
r= Z ———4—c(0, b), (49
beZ+m

and the summation condition means k > Qork =0,/ > Qork =1 =0, b > 0 (always
with k,/ € Z and b € Z + m). In the calculation I use the following non-trivial identity:

b2 Ex(D)¢(z, 0)] 0

Xb: 7c0,b) = —— —= (50)

This can be proven as follows (cf. [11]). First note that

1
D hu (@ (7.2 = = 3 rPen.r)g"y’ 1)
I

(where §' = q%&). So it is equivalent to prove that the constant term of the following
expression vanishes:

3 hu(2)6), . (x, 0) — EZ(T)h“(;f’"’“(T’ 0 52)
i

But this can be rewritten as

> () Oz, 0~ ()Y . (53)
"

This function transforms as a modular function of weight 2, so multiplying it by dt gives
an SL,(Z) invariant differential form. By assumption, it can have a pole at T — ioo, but
nowhere else in the fundamental domain. A contour integral argument then shows that the
residue of this pole must vanish. But this is just the constant term of the function above.
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Applying these formulae to 2 B, the elliptic genus of K 3, I recover the result of Kawai [4].
Now consider the elliptic genus of a Calabi-Yau 4-fold,

¢ = xoE4A% + ﬁ(32 — E4A%). (54)

Amazingly, the x-dependent part equals the coefficients of Gritsenko and Nikulin’s second
product formula [3], which is known to be associated to the generalized Kac—Moody al-
gebra which is an automorphic form correction to the Kac—-Moody algebra defined by the
symmetrized generalized Cartan matrix

4 -4 -12 -4
-4 4 -4 -12
“2=|_12 4 4 4| (53)

~4 -12 -4 4

Unfortunately, there is no such formula for the xo-dependent part. So for a Calabi—Yau
4-fold I find

T = —xo In((kY)®|I6(2)|%) — 3 x In((kY)?| F2(2)1?), (56)
where F3 is Gritsenko and Nikulins product and ITg is
e[2V] ]'[ (1 — e[kT +IU + bV])c&:D (57)
(k,1,b)>0

of weight 6, with coefficients ¢ coming from 2E4A?. The following section describes the
product formula for a Calabi—Yau 3-fold.

4. Calabi-Yau 3-folds

In this section I apply my formulae to Eq. (21), without the factor %x. Expanding this in
q gives

G2y + 0@ (58)
so that ¢(0, — %) = ¢(0, %) = 1, and the corresponding product formula reads
Fo(T, U, V) = p!/1%q"/2y~V4 T 1 - phglyby- @ (59)
(k,1,b)>0

of weight 0, where now p = ¢[T], g = e[U], y = e[V]. In the limit V — 0, this product
behaves like

vV (p)n*(q) (60)

as can be expected for x = 2. This product can be expanded in terms of p (since it is valid
for T» large enough). It turns out to be useful to consider Fo(T, U, 2V). Thus

R(T,U2V)= Y ¢ulg, »p* 1)
keZso+1/12
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This is a variant of what is known as a Fourier-Jacobi expansion. The transformation
properties of Fy(T, U, V) imply that the coefficients ¢,, should be Jacobi forms of weight
0 and index 6k, with a possible multiplier system. From the product formula it is possible
to read of the lowest order coefficient

$1/12(g, ) =" =y T -g" 0 =g"y ™

n>0
=611(q, )1~ (q) (62)

by the product formula for theta-functions. This is indeed a Jacobi cusp form of weight 0
and index 4 with multiplier system [2], which can serve as a consistency check. It can be

written as a sum as follows

Z(_l)nq(2n+1)‘/8y(2n+l)/2 Zp(,,)q"—l/24 , (63)

neZ n>0

where p(n) is the partition function. Now unlike the case of F>(£2) from [3], it does not seem
to be possible to write the entire product as a lifting of its first Fourier-Jacobi coefficient.
It does seem to be likely that this function is also related to some generalized Kac—-Moody
algebra. This is under investigation. The final result for the Calabi—Yau 3-fold calculation is

I =—xIn|Fo(2)I%. (64)
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