JOURNAL OF GEOMETRY AND PHYSICS

The elliptic genus of Calabi-Yau 3- and 4-folds, product formulae and generalized $\mathrm{Kac}-$ Moody algebras

C.D.D. Neumann ${ }^{1}$
Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, Amsterdam, Netherlands

Received 13 March 1997

Abstract

In this paper the elliptic genus for a general Calabi-Yau 4-fold is derived. The recent work of Kawai calculating $N=2$ heterotic string one-loop threshold corrections with a Wilson line turned on is extended to a similar computation where $K 3$ is replaced by a general Calabi-Yau 3- or 4-fold. In all cases there seems to be a generalized Kac-Moody algebra involved, whose denominator formula appears in the result. © 1999 Elsevier Science B.V. All rights reserved.

Subj. Class.: Strings
1991 MSC: 17B67; 81T30; 81R10
Keywords: $N=2$ heterotic strings; Calabi-Yau 3- and 4-folds; Generalized Kac-Moody algebras

1. Introduction

In this paper, I extend the work of Kawai [4], calculating $N=2$ heterotic string oneloop threshold corrections with a Wilson line turned on, to Calabi-Yau 3- and 4-folds. (See also [10] for an alternative interpretation of Kawai's result.) In full generality, this calculation provides a map from a certain class of Jacohi functions (including elliptic genera) to modular functions of certain subgroups of $\mathrm{Sp}_{4}(\mathbf{Q})$, in a product form. In a number of cases, these products turn out to be equal to the denominator formula of a generalized Kac-Moody algebra. It seems natural to assume that this algebra is present in the corresponding string theory, and indeed in [9] it is argued that this algebra is formed by the vertex operators of vector multiplets and hypermultiplets.

[^0]
2. Elliptic genus

In this section, I recall some basic facts about elliptic genera for Calabi-Yau manifolds, mostly from [5], and I explicitly derive it for 4 -folds. Let C be a complex manifold of complex dimension d, with $\operatorname{SU}(d)$ holonomy. Then its elliptic genus is a function $\phi(\tau, z)$ with the following transformation properties

$$
\begin{align*}
& \phi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right)=e\left[\frac{m c z^{2}}{c \tau+d}\right] \phi(\tau, z), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbf{Z}), \tag{1}\\
& \phi(\tau, z+\lambda \tau+\mu)=(-1)^{2 m(\lambda+\mu)} e\left[-m\left(\lambda^{2} \tau+2 \lambda z\right)\right] \phi(\tau, z), \quad \lambda, \mu \in \mathbf{Z}, \tag{2}
\end{align*}
$$

where $m=\frac{1}{2} d$, and it has an expansion of the form

$$
\begin{equation*}
\phi(\tau, z)=\sum_{n \geq 0, r \in \mathbf{Z}+m} c(n, r) q^{n} y^{r}, \tag{3}
\end{equation*}
$$

I use here the notations $e[x]=\mathrm{e}^{2 \pi \mathrm{ix}}, q=e[\tau], y=e[z]$. The coefficients $c(0,-m+p)$ for $0 \leq p \leq d$ have the following geometrical meaning:

$$
\begin{equation*}
c(0,-m+p)=\chi_{p}=\sum_{q=0}^{d}(-1)^{p+q} h^{p, q}, \tag{4}
\end{equation*}
$$

where $h^{p, q}$ are the Hodge-numbers of C. Furthermore

$$
\begin{equation*}
\phi(\tau, 0)=\chi \tag{5}
\end{equation*}
$$

is the Euler number of C. An important feature is that the elliptic genus can be decomposed as

$$
\begin{equation*}
\phi(\tau, z)=\sum_{\mu=-m+1}^{m} h_{\mu}(\tau) \theta_{m, \mu}(\tau, z) \tag{6}
\end{equation*}
$$

for functions h_{μ} and $\theta_{m, \mu}$ defined by

$$
\begin{align*}
& h_{\mu}(\tau)=\sum_{N \equiv-\mu^{2}(\bmod 4 m)} c_{\mu}(N) q^{N / 4 m}, \tag{7}\\
& \theta_{m, \mu}(\tau, z)=\sum_{r \equiv \mu(\bmod 2 m)}(-1)^{r-\mu} q^{r^{2} / 4 m} y^{r} . \tag{8}
\end{align*}
$$

Note that the $c_{\mu}(N)$ are only defined for $-m+1 \leq \mu \leq m$, but since $\theta_{m, \mu+2 m}=$ $(-1)^{2 m} \theta_{m, \mu}$, it is useful to define

$$
\begin{equation*}
c_{r}(N)=(-)^{r-\mu} c_{\mu}(N) \tag{9}
\end{equation*}
$$

for all $r \equiv \mu \bmod 2 m$. The relation between the coefficients of h_{μ} and ϕ is then given by

$$
\begin{equation*}
c(n, r)=c_{r}\left(4 m n-r^{2}\right) \tag{10}
\end{equation*}
$$

Finally, the transformation properties of the h_{μ} can be derived to be

$$
\begin{align*}
& h_{\mu}(\tau+1)=e\left[-\frac{\mu^{2}}{4 m}\right] h_{\mu}(\tau) \tag{11}\\
& h_{\mu}(-1 / \tau)=\sqrt{i / 2 m \tau} \sum_{\nu=-m+1}^{m} e\left[\frac{\mu \nu}{2 m}\right] h_{\nu}(\tau) . \tag{12}
\end{align*}
$$

Now if m is integer, the elliptic genus satisfies the defining properties of what is called a weak Jacobi form of index m and weight 0 . The ring $J_{2 *, *}$ of weak Jacobi forms of even weight and all indices is well known [1]. It is a polynomial algebra over M_{*} (the ring of ordinary modular forms) with two generators

$$
\begin{equation*}
A=\frac{\phi_{10,1}(\tau, z)}{\Delta(\tau)}, \quad B=\frac{\phi_{12,1}(\tau, z)}{\Delta(\tau)} \tag{13}
\end{equation*}
$$

Here $\Delta(\tau)=\eta^{24}(\tau)$ and $\phi_{10,1}$ and $\phi_{12,1}$ are unique cusp forms of index 1 and weights 10 and 12 respectively. The generators have an expansion

$$
\begin{align*}
& A=y^{-1}-2+y+O(q) \tag{14}\\
& B=y^{-1}+10+y+O(q) \tag{15}
\end{align*}
$$

It immediately follows that the space $J_{0,1}$ is one dimensional with basis B, which implies that the elliptic genus of a Calabi-Yau 2-fold is

$$
\begin{equation*}
\frac{\chi}{12} B . \tag{16}
\end{equation*}
$$

So for $K 3$, with $\chi=24$, it should be $2 B$, which is indeed the case [7]. The space $J_{0,2}$ is two dimensional, with basis $E_{4}(\tau) A^{2}$ and $B^{2}, E_{4}(\tau)$ being the normalized Eisenstein series of weight 4 . So the elliptic genus is fixed by specifying χ_{0} and χ, leading to

$$
\begin{equation*}
\chi_{0} E_{4} A^{2}+\frac{\chi}{144}\left(B^{2}-E_{4} A^{2}\right) . \tag{17}
\end{equation*}
$$

In the case that the manifold has strict $\operatorname{SU}(d)$ holonomy, which implies that $\chi_{0}=2$ the following predictions can be done

$$
\begin{align*}
& \chi_{1}=\frac{\chi}{6}-8 \tag{18}\\
& \chi_{2}=\frac{2 \chi}{3}+12 \tag{19}
\end{align*}
$$

so that χ should be a multiple of 6 , and there is a non-trivial relation on the Hodge-numbers

$$
\begin{equation*}
4\left(h^{1,1}+h^{3,1}\right)+44=2 h^{2,1}+h^{2,2} \tag{20}
\end{equation*}
$$

as was recently noticed by Sethi et al. [6]. For a Calabi-Yau 3-fold, the elliptic genus is known to be [5]

$$
\begin{equation*}
\frac{\chi}{2}\left(y^{-1 / 2}+y^{1 / 2}\right) \prod_{n=1}^{\infty} \frac{\left(1-q^{n} y^{2}\right)\left(1-q^{n} y^{-2}\right)}{\left(1-q^{n} y\right)\left(1-q^{n} y^{-1}\right)} \tag{21}
\end{equation*}
$$

3. Product formulae

In this section I look at the following generalization of the formulae in [4]:

$$
\begin{equation*}
Z=\sum_{\mu=-m+1}^{m} Z_{m, \mu}(T, U, V, \tau) h_{\mu}(\tau) \tag{22}
\end{equation*}
$$

where the h_{μ} come from a function ϕ, satisfying the transformation properties (1) and (2), and can be split like (6). For generality, I allow this function to have a pole of finite order N for $\tau \rightarrow \mathrm{i} \infty$, but nowhere else in the fundamental domain. So the function ϕ has a Fourier expansion of the form

$$
\begin{equation*}
\phi(\tau, z)=\sum_{n \geq-N, r \in \mathbf{Z}+m} c(n, r) q^{n} y^{r} \tag{23}
\end{equation*}
$$

converging for all τ with $\tau_{2}>0\left(\tau_{2}=\mathfrak{I} \tau\right)$. The functions $Z_{m, \mu}$ are defined by

$$
\begin{align*}
& Z_{m, \mu}(T, U, V, \tau)=\sum_{m_{1}, m_{2}, n_{1}, n_{2}} \sum_{b \in 2 m \mathbf{Z}+\mu}(-1)^{b-\mu} q^{(1 / 2) p_{L}^{2}} \bar{q}^{(1 / 2) p_{R}^{2}}, \tag{24}\\
& \frac{1}{2} p_{R}^{2}=\frac{1}{4 Y}\left|m_{1} U+m_{2}+n_{1} T+n_{2}\left(T U-m V^{2}\right)+b V\right|^{2}, \tag{25}\\
& \frac{1}{2}\left(p_{L}^{2}-p_{R}^{2}\right)=\frac{b^{2}}{4 m}-m_{1} n_{1}+m_{2} n_{2}, \tag{26}\\
& Y=T_{2} U_{2}-m V_{2}^{2} . \tag{27}
\end{align*}
$$

The function Z is manifestly invariant under the following transformations

$$
\begin{equation*}
U \rightarrow U+2 \lambda m V+\lambda^{2} m T, \quad V \rightarrow V+\lambda T+\mu \tag{28}
\end{equation*}
$$

with $\lambda, \mu \in \mathbf{Z}$ if $m \in \mathbf{Z}$, and $\lambda, \mu \in 2 \mathbf{Z}$ if $m \in \mathbf{Z}+\frac{1}{2}$. (This has the same effect as the substitutions

$$
\begin{align*}
& m_{2} \rightarrow m_{2}-\mu^{2} m n_{2}+\mu b \\
& n_{1} \rightarrow n_{1}+\lambda^{2} m m_{1}-2 \lambda \mu m n_{2}+\lambda b \tag{29}\\
& b \rightarrow b+2 \lambda m m_{1}-2 \mu m n_{2}
\end{align*}
$$

and these leave the inproduct $b^{2} / 4 m-m_{1} n_{1}+m_{2} n_{2}$ invariant. In the same way one proves the other invariances.) It is also invariant under the generalization of $\operatorname{SL}(2, \mathbf{Z})_{T} \times \operatorname{SL}(2, \mathbf{Z})_{U}$, generated by

$$
\begin{align*}
& T \rightarrow T+1, \tag{30}\\
& T \rightarrow-\frac{1}{T}, \quad U \rightarrow U-m \frac{V^{2}}{T}, \quad V \rightarrow \frac{V}{T}, \tag{31}\\
& U \rightarrow U+1, \tag{32}\\
& U \rightarrow-\frac{1}{U}, \quad T \rightarrow T-m \frac{V^{2}}{U}, \quad V \rightarrow \frac{V}{U} . \tag{33}
\end{align*}
$$

Furthermore, it is invariant under exchange of T and U, and under a parity transformation

$$
\begin{align*}
& T \leftrightarrow U \tag{34}\\
& V \rightarrow-V \tag{35}
\end{align*}
$$

These transformations generate a group isomorphic to $\mathrm{Sp}_{4}(\mathbf{Z})$ if $m=1$, and to a paramodular subgroup of $\mathrm{Sp}_{4}(\mathbf{Q})$ [3] for $m>1$. Since $\tau_{2} Z$ is invariant under modular transformation of τ, as will be shown later, the following integral is well-defined and can be evaluated explicitly by the methods of $[8,9]$:

$$
\begin{equation*}
\mathcal{I}=\int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}}(Z-c(0,0)) \tag{36}
\end{equation*}
$$

The subtraction is to remove the logarithmic singularities due to the massless hypermultiplets, and is needed only if m is integer. If it is not, I define $c(0,0)$ to be zero. Poisson resummation on m_{1}, m_{2} leads to

$$
\begin{equation*}
\sum_{m_{1}, m_{2}} q^{(1 / 2) p_{L}^{2}} \bar{q}^{(1 / 2) p_{R}^{2}}=\sum_{k_{1}, k_{2}} \frac{Y}{U_{2} \tau_{2}} q^{(1 / 4 m) b^{2}} \exp \mathcal{G} \tag{37}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{G}= & \frac{-\pi Y}{U_{2}^{2} \tau_{2}}|A|^{2}-2 \pi \mathrm{i} T\left(n_{1} k_{2}+n_{2} k_{1}\right)+\frac{\pi b}{U_{2}}(V \tilde{A}-\bar{V} A) \\
& -\frac{\pi m n_{2}}{U_{2}}\left(V^{2} \tilde{A}-\bar{V}^{2} A\right)+\frac{2 \pi \mathrm{i} m V_{2}^{2}}{U_{2}^{2}}\left(n_{1}+n_{2} \bar{U}\right) A \tag{38}\\
A= & -k_{1}+n_{1} \tau+k_{2} U+n_{2} \tau U \tag{39}\\
\tilde{A}= & -k_{1}+n_{1} \tau+k_{2} \bar{U}+n_{2} \tau \bar{U} \tag{40}
\end{align*}
$$

By applying another Poisson resummation on b, it is easy to find the following transformation properties of $Z_{\mu, m}$:

$$
\begin{equation*}
Z_{\mu, m}(-1 / \tau)=\sqrt{\tau / 2 m \mathrm{i}} \sum_{\nu=-m}^{m} e\left[\frac{-\mu \nu}{2 m}\right] Z_{v, m}(\tau) \tag{41}
\end{equation*}
$$

which together with the known properties (12) of the h_{μ} prove the modular invariance of $\tau_{2} Z$. Following [8,9] a bit further I find

$$
\begin{align*}
\mathcal{I}_{0}= & \frac{Y}{U_{2}} \int \frac{\mathrm{~d}^{2} \tau}{\tau_{2}^{2}} \phi(\tau, 0)=\left.\frac{\pi Y}{3 U_{2}} E_{2}(\tau) \phi(\tau, 0)\right|_{q^{0}}, \tag{42}\\
\mathcal{I}_{d}= & \sum_{b \in \mathbf{Z} \mid m} 2 \pi c(0, b)\left[b^{2} \frac{V_{2}^{2}}{U_{2}}-|b| V_{2}+\frac{U_{2}}{6}\right]-c(0,0) \ln (k Y) \\
& -\ln \prod_{(l>0, b \in \mathbf{Z}+m),(l=0,0<b \in \mathbf{Z}+m)}|1-e[l U+b V]|^{4 c(0, b)} . \tag{43}
\end{align*}
$$

(This under the assumption that $0 \leq V_{2} \leq U_{2} /|b|$ for all b with $c(0, b) \neq 0$). Here

$$
\begin{align*}
& k=\frac{8 \pi}{3 \sqrt{3}} \mathrm{e}^{1-\gamma}, \tag{44}\\
& \mathcal{I}_{n d}=-\ln \prod_{k>0, l \in \mathbf{Z}, b \in \mathbf{Z}+m}|1-e[k T+l U+b V]|^{4 c(k l, b)} \tag{45}
\end{align*}
$$

(This for T_{2} large enough). Putting this all together, I obtain

$$
\begin{align*}
\mathcal{I}= & -2 \ln (k Y)^{(1 / 2) c(0,0)} \\
& \times\left|e[p T+q U+r V] \prod_{(k, l, b)>0}(1-e[k T+l U+b V])^{c(k l, b)}\right|^{2}, \tag{46}
\end{align*}
$$

where the coefficients p, q, r are given by

$$
\begin{align*}
p & =\sum_{b \in \mathbf{Z}+m} \frac{b^{2}}{4 m} c(0, b), \tag{47}\\
q & =\sum_{b \in \mathbf{Z}+m} \frac{1}{24} c(0, b), \tag{48}\\
r & =\sum_{b \in \mathbf{Z}+m}-\frac{|b|}{4} c(0, b), \tag{49}
\end{align*}
$$

and the summation condition means $k>0$ or $k=0, l>0$ or $k=l=0, b>0$ (always with $k, l \in \mathbf{Z}$ and $b \in \mathbf{Z}+m$). In the calculation I use the following non-trivial identity:

$$
\begin{equation*}
\sum_{b} \frac{b^{2}}{4 m} c(0, b)=\frac{\left.E_{2}(\tau) \phi(\tau, 0)\right|_{q^{0}}}{24} \tag{50}
\end{equation*}
$$

This can be proven as follows (cf. [11]). First note that

$$
\begin{equation*}
\sum_{\mu} h_{\mu}(\tau) \theta_{m, \mu}^{\prime}(\tau, z)=\frac{1}{4 m} \sum r^{2} c(n, r) q^{n} y^{r} \tag{51}
\end{equation*}
$$

(where $\theta^{\prime}=q \frac{\partial}{\partial q} \theta$). So it is equivalent to prove that the constant term of the following expression vanishes:

$$
\begin{equation*}
\sum_{\mu} h_{\mu}(\tau) \theta_{m, \mu}^{\prime}(\tau, 0)-\frac{E_{2}(\tau) h_{\mu}(\tau) \theta_{m, \mu}(\tau, 0)}{24} \tag{52}
\end{equation*}
$$

But this can be rewritten as

$$
\begin{equation*}
\sum_{\mu}\left(h_{\mu}(\tau) \eta(\tau)\right)\left(\theta_{m, \mu}(\tau, 0) \eta^{-1}(\tau)\right)^{\prime} \tag{53}
\end{equation*}
$$

This function transforms as a modular function of weight 2 , so multiplying it by $\mathrm{d} \tau$ gives an $\mathrm{SL}_{2}(\mathbf{Z})$ invariant differential form. By assumption, it can have a pole at $\tau \rightarrow \mathrm{i} \infty$, but nowhere else in the fundamental domain. A contour integral argument then shows that the residue of this pole must vanish. But this is just the constant term of the function above.

Applying these formulae to $2 B$, the elliptic genus of $K 3$, I recover the result of Kawai [4]. Now consider the elliptic genus of a Calabi-Yau 4-fold,

$$
\begin{equation*}
\phi=\chi_{0} E_{4} A^{2}+\frac{\chi}{144}\left(B^{2}-E_{4} A^{2}\right) \tag{54}
\end{equation*}
$$

Amazingly, the χ-dependent part equals the coefficients of Gritsenko and Nikulin's second product formula [3], which is known to be associated to the generalized Kac-Moody algebra which is an automorphic form correction to the Kac-Moody algebra defined by the symmetrized generalized Cartan matrix

$$
G_{2}=\left(\begin{array}{cccc}
4 & -4 & -12 & -4 \tag{55}\\
-4 & 4 & -4 & -12 \\
-12 & -4 & 4 & -4 \\
-4 & -12 & -4 & 4
\end{array}\right)
$$

Unfortunately, there is no such formula for the χ_{0}-dependent part. So for a Calabi-Yau 4-fold I find

$$
\begin{equation*}
\mathcal{I}=-\chi_{0} \ln \left((k Y)^{6}\left|\Pi_{6}(\Omega)\right|^{2}\right)-\frac{1}{3} \chi \ln \left((k Y)^{2}\left|F_{2}(\Omega)\right|^{2}\right), \tag{56}
\end{equation*}
$$

where F_{2} is Gritsenko and Nikulins product and Π_{6} is

$$
\begin{equation*}
e[2 V] \prod_{(k, l, b)>0}(1-e[k T+l U+b V])^{c(k l, b)} \tag{57}
\end{equation*}
$$

of weight 6 , with coefficients c coming from $2 E_{4} A^{2}$. The following section describes the product formula for a Calabi-Yau 3-fold.

4. Calabi-Yau 3-folds

In this section I apply my formulae to Eq. (21), without the factor $\frac{1}{2} \chi$. Expanding this in q gives

$$
\begin{equation*}
\left(y^{-1 / 2}+y^{1 / 2}\right)+O(q) \tag{58}
\end{equation*}
$$

so that $c\left(0,-\frac{1}{2}\right)=c\left(0, \frac{1}{2}\right)=1$, and the corresponding product formula reads

$$
\begin{equation*}
F_{0}(T, U, V)=p^{1 / 12} q^{1 / 12} y^{-1 / 4} \prod_{(k, l, b)>0}\left(1-p^{k} q^{l} y^{b}\right)^{c(k l . b)} \tag{59}
\end{equation*}
$$

of weight 0 , where now $p=e[T], q=e[U], y=e[V]$. In the limit $V \rightarrow 0$, this product behaves like

$$
\begin{equation*}
V \eta^{2}(p) \eta^{2}(q) \tag{60}
\end{equation*}
$$

as can be expected for $\chi=2$. This product can be expanded in terms of p (since it is valid for T_{2} large enough). It turns out to be useful to consider $F_{0}(T, U, 2 V)$. Thus

$$
\begin{equation*}
F_{0}(T, U, 2 V)=\sum_{k \in \mathbf{Z}_{\geq 0}+1 / 12} \phi_{k}(q, y) p^{k} \tag{61}
\end{equation*}
$$

This is a variant of what is known as a Fourier-Jacobi expansion. The transformation properties of $F_{0}(T, U, V)$ imply that the coefficients ϕ_{m} should be Jacobi forms of weight 0 and index $6 k$, with a possible multiplier system. From the product formula it is possible to read of the lowest order coefficient

$$
\begin{align*}
\phi_{1 / 12}(q, y) & =q^{1 / 12}\left(y^{-1 / 2}-y^{1 / 2}\right) \prod_{n>0}\left(1-q^{n} y\right)\left(1-q^{n} y^{-1}\right) \\
& =\theta_{11}(q, y) \eta^{-1}(q) \tag{62}
\end{align*}
$$

by the product formula for theta-functions. This is indeed a Jacobi cusp form of weight 0 and index $\frac{1}{2}$ with multiplier system [2], which can serve as a consistency check. It can be written as a sum as follows

$$
\begin{equation*}
\left(\sum_{n \in \mathbf{Z}}(-1)^{n} q^{(2 n+1)^{2} / 8} y^{(2 n+1) / 2}\right)\left(\sum_{n \geq 0} p(n) q^{n-1 / 24}\right) \tag{63}
\end{equation*}
$$

where $p(n)$ is the partition function. Now unlike the case of $F_{2}(\Omega)$ from [3], it does not seem to be possible to write the entire product as a lifting of its first Fourier-Jacobi coefficient. It does seem to be likely that this function is also related to some generalized Kac-Moody algebra. This is under investigation. The final result for the Calabi-Yau 3-fold calculation is

$$
\begin{equation*}
\mathcal{I}=-\chi \ln \left|F_{0}(\Omega)\right|^{2} \tag{64}
\end{equation*}
$$

Acknowledgements

I would like to thank R. Dijkgraaf for helpful discussions.

References

[1] M. Eichler, D. Zagier, The Theory of Jacobi Forms, Birkhäuser, Boston, 1985.
[2] D. Mumford, Tata Lectures on Theta, Birkhäuser, Boston, 1983.
[3] V.A. Gritsenko, V.V. Nikulin, Siegel automorphic form corrections of some Lorentzian Kac-Moody Lie algebras, alg-geom/9504006.
[4] T. Kawai, $N=2$ Heterotic string threshold correction, K3 surface and generalized Kac-Moody superalgebra, Phys. Lett. B 372 (1996) 59-64.
[5] T. Kawai, Y. Yamada, S. Yang, Elliptic genera and $N-2$ superconformal field theory, Nucl. Phys. B 414 (1994) 191-212.
[6] S. Sethi, C. Vafa, E. Witten, Constraints on low-dimensional string compactifications, Nucl. Phys. B 480 (1996) 213-224.
[7] T. Eguchi, H. Ooguri, A. Taormina, S. Yang, Superconformal algebras and string compactification on manifolds with $\mathrm{SU}(N)$ holonomy, Nucl. Phys. B 315 (1989) 193.
[8] L.J. Dixon, V.S. Kaplunovsky, J. Louis, Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B 355 (1991) 649-688.
[9] J.A. Harvey, G. Moore, Algebras, BPS states, and strings, Nucl. Phys. B 463 (1996) 315-368.
[10] R. Dijkgraaf, E. Verlinde, H. Verlinde, Counting dyons in $N=4$ string theory, Nucl. Phys. B 484 (1997) 543561.
[11] R.E. Borcherds, Automorphic forms on $O_{s+2.2}(\mathbf{R})$, and infinite products, Inv. Math. 120 (1995) 161213.

[^0]: ${ }^{1}$ E-mail: neumann@wins.uva.nl

